Comparing Spectral and Object Based Approaches for Classification and Transportation Feature Extraction from High Resolution Multispectral Imagery

نویسنده

  • Sunil Reddy
چکیده

An increasing need exists to update older transportation infrastructure, land use/land cover, environmental impact assessment and road network layer maps. Planning and development rely on accurate data layers for new construction and changes in existing routes. Recent developments in commercial satellite products have resulted in a broader range of high quality image data, enabling detailed analysis. This information differs in its characteristic features (e.g. spatial resolution and geolocational accuracy) as well as utility for particular tasks. Transportation features have historically been difficult to accurately identify and structure into coherent networks; prior analyses have demonstrated problems in locating smaller features. Roadways in urban environments are often partly obscured by proximity to land cover or impervious objects. Recent research has focused on object-based methods for classification and different segmentation techniques key to this approach. Software packages such as eCognition have shown encouraging results in assessing spatial and spectral patterns at varied scales in intelligent classification of aerial and satellite imagery. In this study we examine 2.44m QuickBird and 4m Ikonos multispectral imagery for a 7.5' quad (Dead Tiger Creek) near the Mississippi Gulf Coast. Both spectral and object-based approaches are implemented for pre-classification, after which road features are extracted using various techniques. Results are compared based on a raster completeness model developed. Challenges include intricate networks of smaller roads in residential zones and regions of tall/dense tree cover. Observations for these sites will assist in developing a larger-scale analysis plan for the CSX railroad corridor relocation project.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems

With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

A multiscale feature fusion approach for classification of very high resolution satellite imagery based on wavelet transform

A novel methodology based on multiscale spectral and spatial information fusion using wavelet transform is proposed in order to classify very high resolution (VHR) satellite imagery. Conventional wavelet-based feature extraction methods employ single windows of a fixed size, which are not satisfactory as the VHR imagery contains complex and multiscale objects. In this paper, spectral and spatia...

متن کامل

انجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی

Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002